Copied to
clipboard

G = C2×C42⋊C22order 128 = 27

Direct product of C2 and C42⋊C22

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C42⋊C22, C425C23, C24.99D4, M4(2)⋊12C23, C4≀C215C22, (C22×D4)⋊29C4, C4.11(C23×C4), (C22×Q8)⋊23C4, (C2×C4).181C24, (C2×C42)⋊34C22, C4○D4.20C23, D4.22(C22×C4), C23.641(C2×D4), C4.181(C22×D4), (C22×C4).782D4, Q8.22(C22×C4), C4(C42⋊C22), C22.28(C22×D4), C42⋊C276C22, C23.88(C22⋊C4), (C22×M4(2))⋊22C2, (C2×M4(2))⋊73C22, (C23×C4).516C22, (C22×C4).1499C23, (C2×C4≀C2)⋊29C2, C4○D416(C2×C4), (C2×C4○D4)⋊22C4, (C2×D4)⋊51(C2×C4), (C2×Q8)⋊42(C2×C4), C4.77(C2×C22⋊C4), (C2×C4).1407(C2×D4), (C2×C42⋊C2)⋊43C2, (C2×C4).246(C22×C4), (C22×C4).326(C2×C4), (C22×C4○D4).22C2, C22.24(C2×C22⋊C4), C2.43(C22×C22⋊C4), (C2×C4).286(C22⋊C4), (C2×C4○D4).276C22, SmallGroup(128,1632)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C2×C42⋊C22
C1C2C4C2×C4C22×C4C23×C4C22×C4○D4 — C2×C42⋊C22
C1C2C4 — C2×C42⋊C22
C1C2×C4C23×C4 — C2×C42⋊C22
C1C2C2C2×C4 — C2×C42⋊C22

Generators and relations for C2×C42⋊C22
 G = < a,b,c,d,e | a2=b4=c4=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd=b-1c, ebe=bc2, cd=dc, ce=ec, de=ed >

Subgroups: 668 in 386 conjugacy classes, 172 normal (34 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C24, C4≀C2, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C4≀C2, C42⋊C22, C2×C42⋊C2, C22×M4(2), C22×C4○D4, C2×C42⋊C22
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C24, C2×C22⋊C4, C23×C4, C22×D4, C42⋊C22, C22×C22⋊C4, C2×C42⋊C22

Smallest permutation representation of C2×C42⋊C22
On 32 points
Generators in S32
(1 8)(2 5)(3 6)(4 7)(9 27)(10 28)(11 25)(12 26)(13 31)(14 32)(15 29)(16 30)(17 22)(18 23)(19 24)(20 21)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 18 27 30)(2 19 28 31)(3 20 25 32)(4 17 26 29)(5 24 10 13)(6 21 11 14)(7 22 12 15)(8 23 9 16)
(2 17)(3 25)(4 31)(5 22)(6 11)(7 13)(10 15)(12 24)(14 21)(19 26)(20 32)(28 29)
(1 27)(3 25)(6 11)(8 9)(14 21)(16 23)(18 30)(20 32)

G:=sub<Sym(32)| (1,8)(2,5)(3,6)(4,7)(9,27)(10,28)(11,25)(12,26)(13,31)(14,32)(15,29)(16,30)(17,22)(18,23)(19,24)(20,21), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,27,30)(2,19,28,31)(3,20,25,32)(4,17,26,29)(5,24,10,13)(6,21,11,14)(7,22,12,15)(8,23,9,16), (2,17)(3,25)(4,31)(5,22)(6,11)(7,13)(10,15)(12,24)(14,21)(19,26)(20,32)(28,29), (1,27)(3,25)(6,11)(8,9)(14,21)(16,23)(18,30)(20,32)>;

G:=Group( (1,8)(2,5)(3,6)(4,7)(9,27)(10,28)(11,25)(12,26)(13,31)(14,32)(15,29)(16,30)(17,22)(18,23)(19,24)(20,21), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,27,30)(2,19,28,31)(3,20,25,32)(4,17,26,29)(5,24,10,13)(6,21,11,14)(7,22,12,15)(8,23,9,16), (2,17)(3,25)(4,31)(5,22)(6,11)(7,13)(10,15)(12,24)(14,21)(19,26)(20,32)(28,29), (1,27)(3,25)(6,11)(8,9)(14,21)(16,23)(18,30)(20,32) );

G=PermutationGroup([[(1,8),(2,5),(3,6),(4,7),(9,27),(10,28),(11,25),(12,26),(13,31),(14,32),(15,29),(16,30),(17,22),(18,23),(19,24),(20,21)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,18,27,30),(2,19,28,31),(3,20,25,32),(4,17,26,29),(5,24,10,13),(6,21,11,14),(7,22,12,15),(8,23,9,16)], [(2,17),(3,25),(4,31),(5,22),(6,11),(7,13),(10,15),(12,24),(14,21),(19,26),(20,32),(28,29)], [(1,27),(3,25),(6,11),(8,9),(14,21),(16,23),(18,30),(20,32)]])

44 conjugacy classes

class 1 2A2B2C2D···2I2J2K2L2M4A4B4C4D4E···4J4K···4V8A···8H
order12222···2222244444···44···48···8
size11112···2444411112···24···44···4

44 irreducible representations

dim111111111224
type++++++++
imageC1C2C2C2C2C2C4C4C4D4D4C42⋊C22
kernelC2×C42⋊C22C2×C4≀C2C42⋊C22C2×C42⋊C2C22×M4(2)C22×C4○D4C22×D4C22×Q8C2×C4○D4C22×C4C24C2
# reps1481112212714

Matrix representation of C2×C42⋊C22 in GL6(𝔽17)

1600000
0160000
001000
000100
000010
000001
,
0130000
1300000
000008
0000134
008000
0091600
,
100000
010000
004000
000400
000040
000004
,
1600000
010000
001000
0011600
0000016
0000160
,
1600000
0160000
0016000
0001600
000010
000001

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,0,8,9,0,0,0,0,0,16,0,0,0,13,0,0,0,0,8,4,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,16,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C2×C42⋊C22 in GAP, Magma, Sage, TeX

C_2\times C_4^2\rtimes C_2^2
% in TeX

G:=Group("C2xC4^2:C2^2");
// GroupNames label

G:=SmallGroup(128,1632);
// by ID

G=gap.SmallGroup(128,1632);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,2804,1411,172,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^4=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d=b^-1*c,e*b*e=b*c^2,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
×
𝔽